3,904 research outputs found

    Longevity and mortality in Kennel Club registered dog breeds in the UK in 2014

    Get PDF
    Abstract Background The domestic dog is one of the most diverse mammalian species, exhibiting wide variations in morphology, behaviour and morbidity across breeds. Therefore, it is not unexpected that breeds should also exhibit variation in mortality and longevity. While shorter longevity per se may not necessarily be a welfare issue, a generally foreshortened lifespan in a breed that is accompanied by a high prevalence of a particular cause of death may reveal potentially serious welfare concerns and highlight scope to improve breed welfare. Survey data gathered directly from owners offer useful insights into canine longevity and mortality that can support the overall evidence base for welfare reforms within breeds. Results Mortality data on 5663 deceased dogs registered with the UK Kennel Club were collected from an owner-based survey. The most commonly reported causes of death were old age (13.8%), unspecified cancer (8.7%) and heart failure (4.9%); with 5.1% of deaths reported as unknown cause. Overall median age at death was 10.33 years (interquartile range: 7.17–12.83 years). Breeds varied widely in median longevity overall from the West Highland Terrier (12.71 years) to the Dobermann Pinscher (7.67 years). There was also wide variation in the prevalence of some common causes of death among breeds, and in median longevity across the causes of death. Conclusion Substantial variation in the median lifespan and the prominent causes of death exists across breeds. This study has identified some breeds with both a low median lifespan and also a high proportional mortality for one or more specific causes of death that should be considered as both potential welfare concerns as well as opportunities for improvement

    Large-scale survey to estimate the prevalence of disorders for 192 Kennel Club registered breeds

    Get PDF
    Abstract Background Pedigree or purebred dogs are often stated to have high prevalence of disorders which are commonly assumed to be a consequence of inbreeding and selection for exaggerated features. However, few studies empirically report and rank the prevalence of disorders across breeds although such data are of critical importance in the prioritisation of multiple health concerns, and to provide a baseline against which to explore changes over time. This paper reports an owner survey that gathered disorder information on Kennel Club registered pedigree dogs, regardless of whether these disorders received veterinary care. This study aimed to determine the prevalence of disorders among pedigree dogs overall and, where possible, determine any variation among breeds. Results This study included morbidity data on 43,005 live dogs registered with the Kennel Club. Just under two thirds of live dogs had no reported diseases/conditions. The most prevalent diseases/conditions overall were lipoma (4.3%; 95% confidence interval 4.13-4.52%), skin (cutaneous) cyst (3.1%; 2.94-3.27%) and hypersensitivity (allergic) skin disorder (2.7%; 2.52-2.82%). For the most common disorders in the most represented breeds, 90 significant differences between the within breed prevalence and the overall prevalence are reported. Conclusion The results from this study have added vital epidemiological data on disorders in UK dogs. It is anticipated that these results will contribute to the forthcoming Breed Health & Conservation Plans, a Kennel Club initiative aiming to assist in the identification and prioritisation of breeding selection objectives for health and provide advice to breeders/owners regarding steps that may be taken to minimise the risk of the disease/disorders. Future breed-specific studies are recommended to report more precise prevalence estimates within more breeds

    The sintering temperature effect on the shrinkage behavior of cobalt chromium alloy

    Get PDF
    Problem Statement: Co-Cr based alloys which is well known for its high Young’s modulus, fatigue strength, wear resistance and corrosion resistance is an important metallic bio�material. However, till date there are only two type of Co-Cr alloy which are the castable and wrought cobalt alloy. Powder Metallurgy route for cobalt is expected to give better result of Co-Cr alloy. The purpose of this research was mainly to study the sintering temperature effect to the shrinkage behavior of Cobalt Chromium (Co-Cr) alloy of the powder metallurgy route. Approach: Co-Cr was produced following P/M route under sintering temperature of 1000, 1100, 1200, 1300 and 1400oC. The sintering time was fixed at 60 min. Several tests has been conducted to determine this effect such as the rate of shrinkage measurement, the bulk density and porosity percentage measurement, compression and hardness tests and micro structural study. Result: From the study, it was found that the sintering temperature has caused the shrinkage of Co-Cr. The increasing of the sintering temperature has caused to the increasing of shrinkage of Co-Cr. This has resulted to the reduction of the pore volume and hence increased it density. In conjunction to that, the strength and the hardness of Co-Cr was increased. Conclusion: Therefore, it is hope that it will bring new view of powder metallurgy Co-Cr alloy as bio-material

    The sintering temperature effect on the shrinkage behavior of cobalt chromium alloy

    Get PDF
    Problem Statement: Co-Cr based alloys which is well known for its high Young’s modulus, fatigue strength, wear resistance and corrosion resistance is an important metallic bio�material. However, till date there are only two type of Co-Cr alloy which are the castable and wrought cobalt alloy. Powder Metallurgy route for cobalt is expected to give better result of Co-Cr alloy. The purpose of this research was mainly to study the sintering temperature effect to the shrinkage behavior of Cobalt Chromium (Co-Cr) alloy of the powder metallurgy route. Approach: Co-Cr was produced following P/M route under sintering temperature of 1000, 1100, 1200, 1300 and 1400oC. The sintering time was fixed at 60 min. Several tests has been conducted to determine this effect such as the rate of shrinkage measurement, the bulk density and porosity percentage measurement, compression and hardness tests and micro structural study. Result: From the study, it was found that the sintering temperature has caused the shrinkage of Co-Cr. The increasing of the sintering temperature has caused to the increasing of shrinkage of Co-Cr. This has resulted to the reduction of the pore volume and hence increased it density. In conjunction to that, the strength and the hardness of Co-Cr was increased. Conclusion: Therefore, it is hope that it will bring new view of powder metallurgy Co-Cr alloy as bio-material

    M2M meets D2D: Harnessing D2D Interfaces for the Aggregation of M2M Data

    Get PDF
    Direct device-to-device (D2D) communication presents as an effective technique to reduce the load at the base station (BS) while ensuring reliable localized communication. In this paper, we propose a large-scale M2M data Aggregation and Trunking (MAT) scheme, whereby the user equipments (UEs) aggregate M2M data from the nearby MTDs and trunk this data along with their own data to the BS in the cellular uplink. We develop a comprehensive stochastic geometry framework by considering a Poisson hard sphere model for UE coverage. The main motivation of this model is to capture the fact that a UE can gather data from short range, low-power MTDs located only in its close proximity while ensuring that an MTD is associated to at most one UE. We explore the inherent trade-off between the time reserved for aggregation and successful trunking of data to the BS and compare our results with the baseline case where no aggregation mechanism is used. We show that while the baseline case of connecting a bulk of MTDs directly with the BS is prohibitive, MAT scheme can efficiently gather data from selected MTDs in a distributed manner

    Numerical Investigation on Reduced Moment Resistance and Increased Reinforcement Spacing in Reinforced Concrete Wall Subjected to Blast Load

    Get PDF
    Numerical investigation becomes a highly demanding tool for the best design in engineering. With one validated numerical result available, further investigation is possible to conduct. Especially, for the expensive and limited access for civilian to conduct the test like a blast experiment. With the capability of Arbitrary Lagrange Euler (ALE) solver coupling approach between structure and air in AUTODYN, a detail three-dimensional assessment for RC wall on reduced moment resistance and increased reinforcement spacing are conducted. The RC wall has a cross-sectional dimension of 1829 mm x 1219 mm with wall thickness of 305 mm thickness of strip footing. It is subjected to 13.61 kg Trinitrotoluene (TNT) explosive at 1.21 m standoff distance from the centre. The numerical blast impact on RC wall indicated, although the horizontal and vertical flexural reinforcements are reduced from one of the simulated RC walls, it is capable of demonstrating an equivalent strength to the RC wall tested in the experiment

    Computational issues in the simulation of high speed ballistic impact: a review

    Get PDF
    This paper presents a review of recent developments of nonlinear constitutive material models for the applications in high speed ballistic impact of projectile into several types of targets. The objective is to comprehend some numerical approaches that have been proposed and used in the technical literatures especially regarding bullet-target interaction. Attention is given on the application of several types of computational constitutive models and simulations used to represent the projectile characteristic, ballistic penetration, failure modes in target and deformation pattern. This paper serves as a concise source to identify future direction in the area of computational mechanics of high speed collisions and provides brief literatures for those interested in conducting research into the topi

    Enabling IoT Empowered Smart Lighting Solutions: A Communication Theoretic Perspective

    Get PDF
    The aim of this article is to explore the design space of the IoT empowered smart lighting systems from communication theoretic perspective. It is noted that traditional wired solution such as digital addressable lighting interface (DALI) need to be replaced altogether. The solutions proposing to replace just the end connections by wireless transceivers will not fit in the emerging IoT paradigm. Different architectural blocks of smart lighting systems are briefly described. The key enablers for each of these blocks, their evolution trajectories, existing challenges and possible pathways are briefly summarized. It is noted that the functionality of the building block of IoT based smart lighting system can be translated into an abstract reference architecture. A hirerichical networking architecture is proposed and different networking issues are discussed. Finally, a communication theoretic perspective for wireless interface selection is presented

    Leveraging D2D Communication to Maximize the Spectral Efficiency of Massive MIMO Systems

    Get PDF
    In this paper, we investigate offloading of UEs in D2D mode for a massive MIMO system, where the base station (BS) is equipped with a large, but finite number of antennas and the total number of UEs is kept fixed. We derive closedform expressions for the bounds of the overall capacity of the system. Our results reveal that there exists an optimal user offload fraction, which maximizes the overall capacity. This fraction is strongly coupled with the network parameters such as the number of antennas at the BS, D2D link distance and the transmit SNR at both the UE and the BS. Given a set of network parameters, careful tuning of the offload fraction can provide up to 5Ă— capacity gains

    Drone Empowered Small Cellular Disaster Recovery Networks for Resilient Smart Cities

    Get PDF
    Resilient communication networks, which can continue operations even after a calamity, will be a central feature of future smart cities. Recent proliferation of drones propelled by the availability of cheap commodity hardware presents a new avenue for provisioning such networks. In particular, with the advent of Google’s Sky Bender and Facebook’s internet drone, drone empowered small cellular networks (DSCNs) are no longer fantasy. DSCNs are attractive solution for public safety networks because of swift deployment capability and intrinsic network reconfigurability. While DSCNs have received some attention in the recent past, the design space of such networks has not been extensively traversed. In particular, co-existence of such networks with an operational ground cellular network in a post-disaster situation has not been investigated. Moreover, design parameters such as optimal altitude and number of drone base stations, etc., as a function of destroyed base stations, propagation conditions, etc., have not been explored. In order to address these design issues, we present a comprehensive statistical framework which is developed from stochastic geometric perspective. We then employ the developed framework to investigate the impact of several parametric variations on the performance of the DSCNs. Without loss of any generality, in this article, the performance metric employed is coverage probability of a down-link mobile user. It is demonstrated that by intelligently selecting the number of drones and their corresponding altitudes, ground users coverage can be significantly enhanced. This is attained without incurring significant performance penalty to the mobile users which continue to be served from operating ground infrastructure
    • …
    corecore